The term Artificial Intelligence is often cited in popular press as well as in art and philosophy circles as an alchemic talisman whose functioning is rarely explained. The hegemonic paradigm to date (also crucial to the automation of labor) is not based on GOFAI (Good Old-Fashioned Artificial Intelligence that never succeeded at automating symbolic deduction), but on the neural networks designed by Frank Rosenblatt back in 1958 to automate statistical induction. The text highlights the role of logic gates in the distributed architecture of neural networks, in which a generalized control loop affects each node of computation to perform pattern recognition. In this distributed and adaptive architecture of logic gates, rather than applying logic to information top-down, information turns into logic, that is, a representation of the world becomes a new function in the same world description. This basic formulation is suggested as a more accurate definition of learning to challenge the idealistic definition of (artificial) intelligence. If pattern recognition via statistical induction is the most accurate descriptor of what is popularly termed Artificial Intelligence, the distorting effects of statistical induction on collective perception, intelligence and governance (over-fitting, apophenia, algorithmic bias, “deep dreaming,” etc.) are yet to be fully understood.

Continue reading on Glass Bead journal
Download PDF